知名百科 >> 机器视觉技术 >> 历史版本
编辑时间历史版本内容长度图片数目录数修改原因
2023-06-02 15:31 历史版本1 6036 2 3 新增内容,修正错误,新增图片
最新历史版本 |   下一历史版本 | 返回词条

机器视觉技术

机器视觉技术,是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。

目录

技术特征

基本简介

机器视觉技术机器视觉技术

机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能一一从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。

系统优势

将机器视觉技术应用于禽蛋品质检测具有人工检测所无法比拟的优势。表面缺陷与大小、形状是蛋品品质的重要特征,利用机器视觉进行检测不仅可以排除人的主观因素的干扰,而且还能够对这些指标进行定量描述,避免了因人而异的检测结果,减小了检测分级误差,提高了生产率和分级精度。艾菲特光电技术

系统组成

一个典型的工业机器视觉应用系统,包括数字图像处理技术、机械工程技术、控制技术、光源照明技术、光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。

应用实例

机器视觉系统在质量检测的各个方面得到了广泛的应用,例如:采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,将其与被测大型工件的各面进行比较。在加工或安装大型工件时,可用该认错器测量面间的平行度及垂直度。

以频闪光作为照明光源,利用面阵和线阵CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧螺纹钢几何参数在线测量的动态检测系统。

视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。将传统上通过测量滚珠表面保证加工质量和安全操作的被动式测量变为主动式监控。

用微波作为信号源,根据微波发生器发出不同波特率的方波,测量金属表面的裂纹,微波的波的频率越高,可测的裂纹越狭小。

​发展趋势

有人会说这些年来机器视觉技术的进步一直在提高。然而,当回望过去的35年,功能上的差异是巨大的。最早的机器视觉系统需要微计算机,而且它们的功能很有限。首先认识到微处理器的潜能的其中一个公司是物体识别系统,也是我的老母校。最早的微处理器没有很大的计算能力,因此基本的模式识别算法不得不被舍弃。好消息是可以做灰度级的处理算法,但坏消息是能做灰度级的处理算法而不能在好的灰度比例变化与坏的灰度比例变化之间做出判别。因此,除非有一个全职的工程师来管理这些设置,错误拒绝的数目是紊乱的,

在那个时期的其他机器视觉系统也好不了哪里去。许多的硬件都被设计来完成更复杂的图像处理算法,但是,这些只是在少量算法下才会很好工作,对于一个应用经常没必要用最好的算法。这些早期技术在一些应用中体现出重大的进步,比如光源,相机和物体的物理排列,特别是为自身设计的光源,还有它们之间的连接。优化分段处理是减少计算大量图像处理算法的关键。

幸运地是今天机器视觉的潜在计算技术在这些年里取得了很大的进步。结果是产生出更多成功的应用。配备机器视觉的很多产品都是可用的。在10~15年以前可用的性能优于机器视觉工具包的视觉传感器在今天已是普遍使用了。在一些情况下,智能相机结合处理大多数计算任务的FPGA,DSP和微处理器则会更具有智能性。具有多种连接性的数字摄像机能将一台个人电脑变成一个机器视觉系统。在这里电脑可能需要配备更智能的帧采集器,它可以插在电脑上,处理大多数图像处理任务。

在这些产品中内在的计算能力的不断提高,基于拥有权设计的机器视觉硬件在下滑。越来越多的特殊应用机器视觉系统能由一个或另一个配备的机器视觉排列来处理。