知名百科  > 所属分类  >  百科词条   

稀土

稀土(Rare Earth),是化学周期表系元素和共十七种金属元素的总称。自然界中有250种稀土矿最早发现稀土的是芬兰化学家加多林(John Gadolin)。于1794年从一块形似沥青的重质矿石中分离出第一种稀土“元素”(钇土,即Y2O3),因为18世纪发现的稀土矿物较少,当时只能用化学法制得少量不溶于水的氧化物,历史上习惯地把这种氧化物称为“土”,因而得名稀土。
目录

资源分布 编辑本段

特点

稀土由14种自然元素,以及合成元素组成。自然储量超过1.5亿吨,可开采储量超过0.88亿吨。稀土市场是一个多元化的市场,它不只是一个产品,而是15个稀土元素和钇、钪及其各种化合物从纯度46%的氯化物到99.9999%的单一稀土氧化物及稀土金属,均具有多种多样的用途。加上相关的化合物和混合物,产品不计其数。
稀土元素在地壳中的含量并不稀少,总的克拉克值达到了234.51%,比常见元素铜(克拉克值10%)、锌(克拉克值5%)、锡(克拉克值4%)、铅(克拉克值1?6%)、镍(克拉克值8%)、钴(克拉克值3%)都多。稀土元素在自然界矿物中的分布总体上看存在着三个特点:
①随原子序数的增加,稀土元素的克拉克值呈下降趋势
②原子序数为偶数的稀土元素的克拉克值一般大于与其相邻的奇数元素
③铈组元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd)在地壳的含量大于钇组元素TbDy、Ho、Er、Tm、Yb、Lu、Y)。

状态

在自然界中,稀土主要富集在花岗岩、碱性岩、碱性超基性岩及与它们有关的矿床中。稀土元素在矿物中的赋存状态,按矿物晶体化学分析主要有三种。
(1)稀土元素参加矿物的晶格,构成矿物必不可少的组成部分。这类矿物通常称之为稀土矿物。独居石(REPO4)、氟碳铈矿([La、Ce]FCO3)都属于此类。
(2)稀土元素以类质同象置换矿物中Ca、Sr、Ba、MnZr等元素的形式分散在矿物中。这类矿物在自然界中较多,但是大多数矿物中的稀土含量较低。含稀土的萤石、磷灰石均属于此类。
(3)稀土元素呈离子吸附状态赋存于某些矿物的表面或颗粒之间。这类矿物属于风化壳淋积型矿物,稀土离子吸附于哪种矿物与该种矿物风化前所含矿母岩有关。稀土元素在地壳中平均含量为165.35×10-6(黎彤,1976)。在自然界中稀土元素主要以单矿物形式存在,世界上已发现的稀土矿物和含稀土元素的矿物有250多种,其中稀土含量ΣREE>5.8%的有50~65种,可视为稀土独立的矿物。重要的稀土矿物主要为氟碳酸盐和磷酸盐。

组成元素 编辑本段

稀土及材料
稀土及材料
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:
轻稀土包括:镧、、钐、
重稀土包括:、镝、、铒、、钪、钇。
按矿物特点分类:
铈组(轻稀土)—镧、铈、镨、钕、钷、钐和铕;
钇组(重稀土)—钆、铽、镝、钬、铒、铥、镱、镥和钪。
稀土元素在元素周期表中的位置
稀土元素在元素周期表中的位置
按萃取分离分类:轻稀土(P204弱酸度萃取)—镧、铈、镨、钕;
中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝;
重稀土(P204中酸度萃取)—钬、铒、铥、镱、镥、钇。

理化性质 编辑本段

一是缺少硫化物硫酸盐(只有极个别的),这说明稀土元素具有亲氧性
二是稀土的硅酸盐主要是岛状,没有层状、架状和链状构造;
三是部分稀土矿物(特别是复杂的氧化物及硅酸盐)呈现非晶质状态;
四是稀土矿物的分布,在岩浆岩伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。富钇的矿物大部分都赋存在花岗岩类岩石和与其有关的伟晶岩、气成热液矿床及热液矿床中;
五是稀土元素由于其原子结构、化学和晶体化学性质相近而经常共生在同一个矿物中,即铈族稀土和钇族稀土元素常共存在一个矿物中,但这类元素并非等量共存,有些矿物以含铈族稀土为主,有些矿物则以钇族为主。
在已发现的250多种稀土矿物和含稀土元素的矿物,适合现今选冶条件的工业矿物仅有10余种

常见类型 编辑本段

原矿

独居石
独居石(Monazite)又名磷铈镧矿
化学成分及性质:(Ce,La,Y,Th)[PO4]。成分变化很大。矿物成分中稀土氧化物含量可达50~68%。类质同象混入物有Y、Th、Ca、[SiO4]和[SO4]。独居石溶于H3PO4、HClO4H2SO4中。
晶体结构及形态:单斜晶系,斜方柱晶类。晶体成板状,晶面常有条纹,有时为柱、锥、粒状。
物理性质:呈黄褐色、棕色、红色,间或有绿色。半透明至透明。条痕白色或浅红黄色。具有强玻璃光泽。硬度5.0~5.5。性脆。比重4.9~5.5。电磁性中弱。在X射线下发绿光。在阴极射线下不发光。
生成状态:产在花岗岩及花岗伟晶岩中;稀有金属碳酸岩中;云英岩石英岩中;云霞正长岩、长霓岩与碱性正长伟晶岩中;阿尔卑斯型脉中;混合岩中;及风化壳与砂矿中。
用途:主要用来提取稀土元素。
产地:具有经济开采价值的独居石主要资源是冲积型或海滨砂矿床。最重要的海滨砂矿床是在澳大利亚沿海、巴西以及印度等沿海。此外,斯里兰卡、马达加斯加、南非、马来西亚、中国、泰国、韩国、朝鲜等地都含有独居石的重砂矿床。
独居石的生产近几年呈下降趋势,主要原因是由于矿石中元素具有放射性,对环境有害。

氟碳铈矿

化学成分性质:(Ce,La)[CO3]F。机械混入物有SiO2Al2O3P2O5。氟碳铈矿易溶于稀HCl、HNO3、H2SO4、H3PO4
晶体结构及形态:
六方晶系。复三方双锥晶类。晶体呈六方柱状或板状。细粒状集合体。
物理性质:黄色、红褐色、浅绿或褐色。玻璃光泽、油脂光泽,条痕呈白色、黄色,透明至半透明。硬度4~4.5,性脆,比重4.72~5.12,有时具放射性、具弱磁性。在薄片中透明,在透射光下无色或淡黄色,在阴极射线下不发光。
生成状态:产于稀有金属碳酸岩中;花岗岩及花岗伟晶岩中;与花岗正长岩有关的石英脉中;石英─铁锰碳酸盐岩脉中;砂矿中。
用途:它是提取铈族稀土元素的重要矿物原料。铈族元素可用于制作合金,提高金属的弹性、韧性和强度,是制作喷气式飞机、导弹、发动机及耐热机械的重要零件。亦可用作防辐射线的防护外壳等。此外,铈族元素还用于制作各种有色玻璃

磷钇矿

化学成分及性质:Y[PO4]。成分中Y2O361.4%,P2O538.6%。有钇族稀土元素混入,其中以镱、铒、镝、钆为主。尚有、铀、钍等元素代替钇,同时伴随有硅代替磷。一般来说,磷钇矿中铀的含量大于钍。磷钇矿化学性质稳定。晶体结构及形态:四方晶系、复四方双锥晶类、呈粒状及块状。
物理性质:黄色、红褐色,有时呈黄绿色,亦呈棕色或淡褐色。条痕淡褐色。玻璃光泽,油脂光泽。硬度4~5,比重4.4~5.1,具有弱的多色性和放射性。
生成状态:主要产于花岗岩、花岗伟晶岩中。亦产于碱性花岗岩以及有关的矿床中。在砂矿中亦有产出。用途:大量富集时,用作提炼稀土元素的矿物原料。

镧钒褐帘石

日本山口大学、爱媛大学和东京大学的联合研究小组发表一份公报说,他们在三重县发现了一种含有稀土的新品种矿物。稀土在改造传统产业和发展高新技术领域当中具有“点石成金”的作用。而新矿物是2011年4月在三重县伊势市的山中发现的,它是含有稀土镧和稀有金属钒的一种特殊褐帘石。2013年3月1日,这种矿物被国际矿物学协会认定为新矿物,并被命名为“镧钒褐帘石”。

工业成品 编辑本段

碳酸氯化稀土

这是稀土工业中最主要的两种初级产品,一般地说,当前有两个主要工艺生产这两种产品。
一个工艺是浓硫酸焙烧工艺,即把稀土精矿与硫酸混合在回转窑中焙烧。经过焙烧的矿用水浸出,则可溶性的稀土硫酸盐就进入水溶液,称之为浸出液。然后往浸出液中加入碳酸氢铵,则稀土呈碳酸盐沉淀下来,过滤后即得碳酸稀土。
另一种工艺叫烧碱法工艺,简称碱法工艺。一般是将60%的稀土精矿与浓碱液搅匀,在高温下熔融反应,稀土精矿即被分解,稀土变为氢氧化稀土,把碱饼经水洗除去钠盐和多余的碱,然后把水洗过的氢氧化稀土再用盐酸溶解,稀土被溶解为氯化稀土溶液,调酸度除去杂质,过滤后的氯化稀土溶液经浓缩结晶即制得固体的氯化稀土。

磷矿稀土

自然界的稀土元素除了赋存在各种稀土矿中外,还有相当大的一部分与磷灰石和磷块岩矿共生。由于稀土的离子半径(0.848~0.106nm)与Ca2+(0.106nm)很接近,稀土以类质同象方式赋存于磷矿岩中。世界磷矿总储量约为 1000亿吨,稀土平均含量为0.5‰,估计世界磷矿中伴生的稀土总量为5000万吨。
针对矿中稀土含量低及其赋存状态特殊等特点,国内外已经开展了多种回收工艺研究,可分为湿法和热法:
湿法中,根据分解酸不同又可分为硝酸法、盐酸法、硫酸法。从磷化工过程回收稀土有多种,均和磷矿加工方式密切相关。
热法生产过程中,稀土主要进入硅酸盐熔渣中,可采用大量盐酸或硝酸分解浸出,过滤除去硅石后,再采用TBP等萃取回收稀土,稀土回收率可以达到 60%。
随着磷矿资源不断利用,正转向低品质磷矿的开发,硫酸湿法磷酸工艺成为磷化工主流方法,对硫酸湿法磷酸中的稀土进行回收已成为研究热点。在硫酸湿法磷酸生产过程中,通过控制稀土在磷酸中的富集,再采用有机溶剂萃取提取稀土的工艺比早期开发的方法更具有优势。

混合稀土

由稀土矿中提取出含有镧、铈、镨、钕及少量钐、铕、钆混合的氧化物或氯化物经熔盐电解制出的金属。稀土总量大于98%,铈大于48%的轻稀土。在空气中易氧化为黑色,室温下能和水反应,升温而加快。可做打火石、合金添加剂、贮氢材料等。

制备方法 编辑本段

选矿

选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。
当前中国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。
内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含、稀土矿物)。采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~65%Fe2O3(氧化铁)的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3(氧化铁)以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。

测定

1、显色溶液吸取滤液15ml,于50ml锥形瓶中,加入7ml草酸5%,3ml偶氮氯三摇匀,这是显包液。
2、参比溶液与显色溶液一样操作后,再加入1-2滴偶磷酸钠(滴两滴即可)溶液,褪色后作参比液(空白液),倒入2cm比色器中,波长660nm,测其吸光度及含量。(可在第二通道做)。注:显色液为墨黑色。

分解

稀土精矿中的稀土,一般呈难溶于水的碳酸盐、氟化物、磷酸盐、氧化物或硅酸盐等形态。必须通过各种化学变化将稀土转化为溶于水或无机酸的化合物,经过溶解、分离、净化、浓缩或灼烧等工序,制成各种混合稀土化合物如混合稀土氯化物,作为产品或分离单一稀土的原料,这样的过程称为稀土精矿分解也称为前处理。
分解稀土精矿有很多方法,总的来说可分为三类,即酸法、碱法和氯化分解。酸法分解又分为盐酸分解、硫酸分解和氢氟酸分解法等。碱法分解又分为氢氧化钠分解或氢氧化钠熔融或苏打焙烧法等。一般根据精矿的类型、品位特点、产品方案、便于非稀土元素的回收与综合利用、利于劳动卫生与环境保护、经济合理等原则选择适宜的工艺流程。
当前,虽然已发现有近200种稀散元素矿物,但由于稀少而未富集成具有工业开采的独立矿床,迄今只发现有很少见的独立锗矿、矿、矿,但矿床规模都不大。

硫酸溶解

铈组(硫酸复盐难溶)—镧、铈、镨、钕和钷;
铽组(硫酸复盐微溶)—钐、铕、钆、铽、镝和钬;
钇组(硫酸复盐易溶)—钇、铒、铥、镱、镥和钪。

冶炼

稀土冶炼方法有两种,即湿法冶金和火法冶金。
湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。
火法冶金工艺过程简单,生产率较高。稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。火法冶金的共同特点是在高温条件下生产。

分步法

从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉淀)。析出物中,溶解度较小的稀土元素得到富集,溶解度较大点的稀土元素在溶液中也得到富集。因为稀土元素之间的溶解度差别很小,必须重复操作多次才能将这两种稀土元素分离开来,因而这是一件非常困难的工作。全部稀土元素的单一分离耗费了100多年,一次分离重复操作竟达2万次,对于化学工作者而言,其艰辛的程度,可想而知。因此用这样的方法不能大量生产单一稀土。

离子交换

由于分步法不能大量生产单一稀土,因而稀土元素的研究工作也受到了阻碍,第二次世界大战后,美国原子弹研制计划即所谓曼哈顿计划推动了稀土分离技术的发展,因稀土元素和铀、钍等放射性元素性质相似,为尽快推进原子能的研究,就将稀土作为其代用品加以利用。而且,为了分析原子核裂变产物中含有的稀土元素,并除去铀、钍中的稀土元素,研究成功了离子交换色层分析法(离子交换法),进而用于稀土元素的分离。
离子交换色层法的原理是:首先将阳离子交换树脂填充于柱子内,再将待分离的混合稀土吸附在柱子入口处的那一端,然后让淋洗液从上到下流经柱子。形成了络合物的稀土就脱离离子交换树脂而随淋洗液一起向下流动。流动的过程中稀土络合物分解,再吸附于树脂上。就这样,稀土离子一边吸附、脱离树脂,一边随着淋洗液向柱子的出口端流动。由于稀土离子与络合剂形成的络合物的稳定性不同,因此各种稀土离子向下移动的速度不一样,亲和力大的稀土向下流动快,结果先到达出口端。
离子交换法的优点是一次操作可以将多个元素加以分离。而且还能得到高纯度的产品。这种方法的缺点是不能连续处理,一次操作周期花费时间长,还有树脂的再生、交换等所耗成本高,因此,这种曾经是分离大量稀土的主要方法已从主流分离方法上退下来,而被溶剂萃取法取代。但由于离子交换色层法具有获得高纯度单一稀土产品的突出特点,当前,为制取超高纯单品以及一些重稀土元素的分离,还需用离子交换色层法分离制取一稀土产。

溶剂萃取

利用有机溶剂从与其不相混溶的水溶液中把被萃取物提取分离出来的方法称之为有机溶剂液-液液萃取法,简称溶剂萃取法,它是一种把物质从一个液相转移到另一个液相的传质过程。
溶剂萃取法在石油化工、有机化学、药物化学和分析化学方面应用较早。但近四十年来,由于原子能科学技术的发展,超纯物质及稀有元素生产的需要,溶剂萃取法在核燃料工业、稀有冶金等工业方面,得到了很大的发展。中国在萃取理论的研究、新型萃取剂的合成与应用和稀土元素分离的萃取工艺流程等方面,均达到了很高的水平。
溶剂萃取法其萃取过程与分级沉淀分级结晶、离子交换等分离方法相比,具有分离效果好、生产能力大、便于快速连续生产、易于实现自动控制等一系列优点,因而逐渐变成分离大量稀土的主要方法。
溶剂萃取法的分离设备有混合澄清槽、离心萃取器等,提纯稀土所用的萃取剂有:以酸性磷酸酯为代表的阳离子萃取剂如P204稀土萃取剂、P507稀土萃取剂,以胺为代表的阴离子交换液N1923和以TBP、P350等中性磷酸为代表的溶剂萃取剂三种。这些萃取剂的粘度与比重都很高,与水不易分离。通常用煤油等溶剂将其稀释再用。
轻稀土(P204弱酸度萃取)—镧、铈、镨、钕和钷;
中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝;
重稀土(P204中酸度萃取)—钬、铕、铒、铥、镱、镥和钪。

提纯

Pm以外的16个稀土元素都可以提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。

生产原料

稀土样品
稀土样品
稀土金属一般分为混合稀土金属和单一稀土金属。混合稀土金属的组成与矿石中原有的稀土成份接近,单一金属是各稀土分离精制的金属。以稀土氧化物(除钐、铕、镱及铥的氧化物外)为原料用一般冶金方法很难还原成单一金属,因其生成热很大、稳定性高。因此如今生产稀土金属常用的原料是它们的氯化物和氟化物。

熔盐电解

工业上大批量生产混合稀土金属一般使用熔盐电解法。这一方法是把稀土氯化物等稀土化合物加热熔融,然后进行电解,在阴极上析出稀土金属。电解法有氯化物电解和氧化物电解两种方法。单一稀土金属的制备方法因元素不同而异。钐、铕、镱、铥因蒸气压高,不适于电解法制备,而使用还原蒸馏法。其它元素可用电解法或金属热还原法制备。
氯化物电解是生产金属最普通的方法,特别是混合稀土金属工艺简单,成本便宜,投资小,但最大缺点是氯气放出,污染环境。
氧化物电解没有有害气体放出,但成本稍高些,一般生产价格较高的单一稀土如钕、镨等都用氧化物电解。

真空还原

电解法只能制备一般工业级的稀土金属,如要制备杂质较低,纯度高的金属,一般用真空热还原的方法来制取。一般是把稀土氧化物先制成氟化稀土,在真空感应炉内用金属钙进行还原,制得粗金属,然后再经过重熔和蒸馏获得较纯的金属,这一方法可以生产所有的单一稀土金属,但钐、铕、镱、铥不能用这种方法。钐、铕、镱、铥与钙的氧化还原电位仅使氟化稀土产生部分还原。一般制备这些金属,是利用这些金属的高蒸汽压和镧金属的低蒸气压的原理,将这四种稀土的氧化物与镧金属的碎屑混合压块,在真空炉中进行还原,镧比较活泼,钐、铕、镱、铥被镧还原成金属后收集在冷凝上,与渣很容易分开。

应用领域 编辑本段

军事方面

稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、
钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,得益于稀土科技领域的技术。

冶金工业

稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。

石油化工

用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。

玻璃陶瓷

主要包括以下几个方面:超导陶瓷压电陶瓷导电陶瓷介电陶瓷敏感陶瓷等。
稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃眼镜片显像管示波管平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。
随着材料科学的发展,近年来功能复合陶瓷备受关注,稀土掺杂在功能复合陶瓷的开发研究方面也取得了较大进展。浙江大学陈昂等,采用常规功能陶瓷的制备方法,YBa2Cu3O7-x和铁电陶瓷BaTiO3复合,获得了铁电性与超导性共存的YBa2Cu3O7-x-BaTiO3系复合功能陶瓷,其电导特性符合三维导电行为,并当YBa2Cu3O7-x含量较高时呈超导性。华中理工大学周东祥等的研究指出,LaCoO3-SrCoO3系和LaCrO3-SrCrO3系复合功能陶瓷,可用作磁流体电机的电极材料和气敏材料;而在NTC热敏复合材料NiMn2O4-LaCrO3陶瓷中,新化合物LaMnO3导电相决定着陶瓷的主要性质。西安交通大学的邹秦等通过用稀土离子Y3+、La3+对(Sr,Ca)TiO3掺杂,省去了原有的用碱金属离子(Nb5+、Ta5+)涂覆并进行热扩散的工艺,而且制得的陶瓷材料致密度高、工艺性能良好,并保持了电阻率低(ρ为10-2Ω/cm量级)、非线性高(非线性系数α﹥10)的介电-压敏复合功能特性。
智能陶瓷是指具有自诊断、自调整、自恢复、自转换等特点的一类功能陶瓷。如前所述在锆钛酸铅(PZT)陶瓷中添加稀土镧而获得的锆钛酸铅镧(PLZT)陶瓷,不但是一种优良的电光陶瓷,而且因其具有形状记忆功能,即体现出形状自我恢复的自调谐机制,故也是一种智能陶瓷。智能陶瓷材料概念的提出,倡导了一种研制和设计陶瓷材料的新理念,对拓宽稀土在近代功能陶瓷中应用极为有利。近年的研究还表明,稀土在生物陶瓷抗菌陶瓷新型陶瓷材料中也有着独特的作用。由于稀土元素可与银、锌、铜等过渡元素协同增效,开发的稀土复合磷酸盐抗菌可使陶瓷表面产生大量的羟基自由基,从而增强了陶瓷的抗菌性能。
稀土陶瓷颜料主要是指五种色相的组合着色锆英石基稀土陶瓷颜料。它可用作彩釉砖、外墙砖地砖等建筑陶瓷的装饰材料,尤其适用于卫生洁具陶瓷制品的彩饰,还可用作瓷器釉上彩、釉中彩和釉下彩的色基。组合着色锆英石基稀土陶瓷颜料,是以二氧化锆二氧化硅为基质材料,以过渡元素和稀土元素为组合着色剂,添加少量矿化剂,经高温900~1150℃固相反应合成。其主要技术指标如下:色相有红、黄、蓝、绿和灰,稳定性小于或等于1280℃最高可达1300℃),适应气氛为氧化焰,颗粒直径小于15μm的不少于92%,大于30μm者为零新材料
稀土钴及钕铁硼永磁材料,具有高剩磁、高矫顽力和高磁能积,被广泛用于电子及航天工业;纯稀土氧化物和三氧化二铁化合而成的石榴石铁氧体单晶及多晶,可用于微波与电子工业;用高纯氧化钕制作的钇铝石榴石钕玻璃,可作为固体激光材料;稀土六硼化物可用于制作电子发射的阴极材料;镧镍金属是70年代新发展起来的贮氢材料;铬酸镧是高温热电材料;当前世界各国采用钇铜氧元素改进的钡基氧化物制作的超导材料,可在液氮温区获得超导体,使超导材料的研制取得了突破性进展。此外,稀土还广泛用于照明光源,投影电视荧光粉、增感屏荧光粉、三基色荧光粉、复印灯粉;在农业方面,向田间作物施用微量的硝酸稀土,可使其产量增加5~10%;在轻纺工业中,稀土氯化物还广泛用于制毛皮、皮毛染色、毛线染色及地毯染色等方面。

农业方面

研究结果表明,稀土元素可以提高植物的叶绿素含量,增强光合作用,促进根系发育,增加根系对养分吸收。稀土还能促进种子萌发,提高种子发芽率,促进幼苗生长。除了以上主要作用外,还具有使某些作物增强抗病、抗寒、抗旱的能力。
大量的研究还表明,使用适当浓度稀土元素能促进植物对养分的吸收、转化和利用。玉米用稀土拌种,出苗、拔节比对照早1~2天,株高增加0.2米,早熟3~5天,而且籽粒饱满,增产14%。大豆用稀土拌种,出苗提早1天,单株结荚数增加14.8~26.6个,3粒荚数增多,增产14.5%~20.0%。喷施稀土可使苹果和柑橘果实的Vc含量、总糖含量、糖酸比均有所提高,促进果实着色和早熟。并可抑制贮藏过程中呼吸强度,降低腐烂率。

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 诺亚方舟    下一篇 浸渍材料

同义词

暂无同义词